Tsp_06667 cDNA ORF clone, Trichinella spiralis

The following Tsp_06667 gene cDNA ORF clone sequences were retrieved from the NCBI Reference Sequence Database (RefSeq). These sequences represent the protein coding region of the Tsp_06667 cDNA ORF which is encoded by the open reading frame (ORF) sequence. ORF sequences can be delivered in our standard vector, pcDNA3.1+/C-(K)DYK or the vector of your choice as an expression/transfection-ready ORF clone. Not the clone you want? Click here to find your clone.

***CloneID Accession No. Definition **Vector *Turnaround time Price (USD) Select
OTr124437 XM_003378675.1
Latest version!
Trichinella spiralis putative protein tag-76 (Tsp_06667) mRNA, complete cds. pcDNA3.1-C-(k)DYK or customized vector 14-16 $510.30
$729.00

ORF Online Only Promotion

Next-day Shipping ORF Clones ( in default vector with tag)
1 Clone 30% OFF
2-4 Clone 40% OFF
5 or more Clone 50% OFF
All Other ORF Clones
30% OFF

*Business Day

** You may select a custom vector to replace pcDNA3.1+/C-(K)DYK after clone is added to cart.

** GenScript guarantees 100% sequence accuracy of all synthetic DNA constructs we deliver, but we do not guarantee protein expression in your experimental system. Protein expression is influenced by many factors that may vary between experiments or laboratories. In addition, please pay attention to the signal peptide, propeptide and transit peptide in target ORF, which may affect the choice of vector (N/C terminal tag vector).

***One clone ID might be correlated to multiple accession numbers, which share the same CDS sequence.

  • Reference Sequences (Refseq)
    CloneID OTr124437
    Clone ID Related Accession (Same CDS sequence) XM_003378675.1
    Accession Version XM_003378675.1 Latest version! Documents for ORF clone product in default vector
    Sequence Information ORF Nucleotide Sequence (Length: 2730bp)
    Protein sequence
    SNP
    Vector pcDNA3.1-C-(k)DYK or customized vector User Manual
    Clone information Clone Map MSDS
    Tag on pcDNA3.1+/C-(K)DYK C terminal DYKDDDDK tags
    ORF Insert Method CloneEZ™ Seamless cloning technology
    Insert Structure linear
    Update Date 2011-06-30
    Organism Trichinella spiralis
    Product putative protein tag-76
    Comment Comment: PROVISIONAL REFSEQ: This record has not yet been subject to final NCBI review. This record is derived from an annotated genomic sequence (NW_003526943). Trichinella spiralis is a roundworm that cause most of the human trichinella infections and deaths around the world. Its pathogenicity is higher than that of other trichinella species due to the higher number of newborn larvae produced by the females and for the stronger immune reaction induced in humans. The life cycle of the parasite begins when a person or an animal eats contaminated meat containing larvae. T. spiralis is a basal nematode with a well-defined phylogenetic position near the root of the phylum Nematoda. The genome size estimate based on flow sorted nuclei stained with PI (Spencer Johnston, Texas A&M University) is 1C = 71.3 +/1 1.2 Mb. The strain being sequenced (ISS 195) was obtained from the laboratory of Judith Appleton (Cornell University) and has been maintained in rats since 1970. Worm isolation and DNA extraction was performed by Dante Zarlenga (USDA) This assembly consists of plasmid, fosmid and BAC end sequences. The data were assembled using the assembly engine, PCAP (Xiaoqiu Huang et. al. 2006). Our goal is to explore this WGS draft sequence of T. spiralis in several ways: i) to provide a better understanding of evolutionary biology by identifying gene loss or gain across the phylum Nematoda and clarify evolution of genome architecture (synteny, operons); ii) help identify RNA genes and regulatory regions; and iii) better define proteins involved in nematode parasitism that impact health and disease and are relevant to both host-parasite relationships and basic biological processes.. We masked the repeats by using RECON (Bao and Eddy, 2002) and RepeatMasker (A.F.A. Smit, R. Hubley & P. Green RepeatMasker at http://repeatmasker.org). Then the Ribosomal RNA genes were identified using RNAmmer ((http://www.cbs.dtu.dk/cgi-bin/nph-sw_request?rnammer ). Transfer RNA genes were identified with tRNAscan-SE (Lowe and Eddy, 1997). Non-coding RNAs, such as microRNAs, were identified by sequence homology search of the Rfam database (http://selab.janelia.org/software.html). Protein-coding genes were predicted using a combination of ab initio programs (Snap, Korf, 2004 and Fgenesh, Softberry, Corp) and an inhouse evidence based program Eannot (Eannot Ding et al., 2004) which uses mRNA, EST and protein alignment information from same species or cross-species to aid in gene structure determination. A consensus gene set from the above prediction algorithms will be generated, using a logical, hierarchical approach. Gene product naming was determined by BER (JCVI: http://ber.sourceforge.net ). For information regarding this assembly or project, or any other GSC genome project, please visit our Genome Groups web page (http://genome.wustl.edu/genome_group_index.cgi) and email the designated contact person. For specific questions regarding the T. spiralis genome project contact Makedonka Mitreva [email protected] (Washington University School of Medicine). The National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH) provided funds for this project.

    1
    61
    121
    181
    241
    301
    361
    421
    481
    541
    601
    661
    721
    781
    841
    901
    961
    1021
    1081
    1141
    1201
    1261
    1321
    1381
    1441
    1501
    1561
    1621
    1681
    1741
    1801
    1861
    1921
    1981
    2041
    2101
    2161
    2221
    2281
    2341
    2401
    2461
    2521
    2581
    2641
    2701
    ATGTCTCAAC AAAGCCAAGA TACGAATTTA GCTGCAGATG AACTGTCGCA GTTGGGTTTA 
    AAAGAATTAG TGAAGCGTCC TGGATACGGG ACTGTTGGCA AGCCGATAAA ATTAGCATGC
    AATTATTTTC CACTGATAAA ATTACAGAAA GGTGATATTG TGGTTAACAG ATATCACATC
    GACATACAAC ATCCACGTTT AAAGTTGAAT TGGTTCGATG ATGACAATCG TGACGTATTT
    TGGGCATATG TAGTGAAGCG TTCAGATATT TTTGGCGATC CATTTAAATT AGCGTACGAT
    GGGAAGAGTA CTTTGTTCAC AGTTGAGAAA TTACATTTGA AGCAAGTCGG TGAAACAGCA
    GATCCGGAAA AGTTTTCCTT CAAAACTGTT CGAGAAAATA AACCATCAGA GTTATCTATT
    TTGATGCAAT TCACTGGTCT GGTTCACTTG GACTTCAGAA ATGCAGAAGC CGGTTCGCTG
    GATGAACGTG AAAAGGGTCC AATTCAATTT TTGGATATAT TGTTTGCACA AGGGCGTTCA
    TCTCCATTAT TTGAATTGTC GAAATCATTC AAAGCAGTCA GGAATTCATT TTATTGCATT
    CCACAAGGTG CTGGTGTGGA CGTGAAATAT GGCATTGAAT TATGGAGAGG CTTGTTCATT
    TCTGCGCGCG TAATTGATGG TTTTCGACCA GCGATTAATA TTGATGTATC ACACAGTTGC
    TTTTACAAGC GTCAGTCACT GATAAATTTG ATTTGCGACA TATTGAATGG TGATGAACGT
    GAAGTAAGAT TTCATCCAAA TCAGCTTAGA TTGAATACCC AACTTCAACC AGAACATTTG
    AACTTGTTGA TACCAGAATT AAAAGGGGTC TGTATTCATA CAACACATCG AAATCAAGAT
    CGAATTTATC GTATTAAAAA TATACTCAGT ACGGCAGTAT CGATGAAATT CGAAAAAGAC
    GGAAAAGAAG TTTCAGTTGC GGAATATTTT CGTGATGTTT ATGGGCCATT AAAGTATCCA
    AACTTGCCGT TGGTTGAAGT CGGCAGTAAA TCAAAACCAA TTTATTTCCC AGTTGAACTT
    TGTCAAGTGG CAAACTGTCA AAGATACAAC AAGAAATTGA AAGCGTGTCA AACGACTTCT
    ATAATTCGAT TTGCTTCGAC AGACGCTCCT ACTCGAATTC TAAAGTGTAT GGACATGGTC
    AAGAAATCAA ATTTCAATAA TGATCCATTT TTGAAAAGTT TTGGCGTTCA AATTAAAGCG
    GAACCAATGA TTGTTAGTGG ACGAGTTTTG CCTCCGCCTA GGTTGGAATA TGGTAAAGGA
    AATGGAGGAC GTCAAATAAT TCTTACACCA AAAGATGGAG CATGGAATTC GAATGAATTT
    AAATTTTTTG AATCTGCTTC TTGCGAATCA TTTGGATTTG TATCGTTTCT ACCACCACAT
    AAAGCATCAA TGTTACAGGA ATTCTGTCTG CAAATTGTCA GAACATGTCG TAGTACAGGA
    ATTGAAATGC CGGACAGCCC AAAATTTTAC GAACAAGCGC GAAAAAATGA TACGGTAGAA
    ATGGTATTAA AACGTATTGC TGACAAATGT GACAGAGATG GAATAAAATG TGATTTGGTA
    TTTGTCGCGT TATTTTCATC TGAACAATAT GCTCAAGTGA AATCTTGTGG TGATATCACT
    TTTGGATTGG TCACTCAGTG TGTATTACCG AAAACAATAA GTGATGTAGC AATAAAGAAG
    AGTTATTCGA CGATGTTAAA TATTGCGATG AAAATAAATA TGAAAATTGG TGGCATCAAT
    ACAAAATTAC TGGAAGATGA AATTTTGGAT AATTATTTGT ATAAAAATAA TGCATTGGTA
    ATTGGTGTGG ATGTGGTTCA TCCATCTGTT GTAGAAACGC ATTTACCATC AATAGCTTCG
    GTGGGTATTA TTCATGGTAT TGTTGTTGGA AATGTGGATA CAAAAGTGAC GAAATTTCAT
    GCTTCGGTGA AACTACAACC AGCGAAACAA GAACTGATCA CAGGATTTAT CGAACAATTT
    TCTGAACGTT TACTGGAATA TCTTGATGTT AATGGTACGG CTCCGAAAAA TATTATTGTT
    TATCGAGATG GAGTATCCGA AGGTCAATTT ATGCAGGTTT TGGAAGAAGA ACTGCCTGCT
    CTTCGTAGGG CTTGCAAATC ATTTGCAACA AATTACCGGC CGTTGATTAC GTTTATTGTG
    GTTCAAAAGC GACATCATGC TCGATTTTTT TGTTGTGATG AAGCTGCAGC ACGAGGACGC
    GGGAAAAACA TCCCTGCTGG TACTGTTATC GATAGAGTAG TGACATCTCC TGATGAATAT
    GATTTCTTTT TGTGCAGTCA TCATGGAATT CAAGGAACTA GTAGACCGAC GCGATATCAT
    GTGCTGTTTG ATGAAAGCAA CATGGATGCG AATGTCATGC AATCGATTAC ATACTATTTA
    TGTCATCTGT ATGGTAGATG TGCTCGTTCT GTCAGTATAC CAGCACCAGT ATATTTTGCA
    GATTTAGTTT GCGCCCGTGC TCGTTATCAT GTTCTTGCAG CGTTAAATTC TGGTCTAGTG
    GAAAAGTATT CTGATGAAGA CAGTAATAGT AGTAGTGGTA GTAGTAGTAG TAGTAGTAGT
    TCCAGCAGTA AAGCCGAATC CGTGAAAACA GAATTGACTA ATATAATTGC ACTTCACAAA
    AGAGTTAAAA GAATCATGTA CTTTGCATGA

    The stop codons will be deleted if pcDNA3.1+/C-(K)DYK vector is selected.

    RefSeq XP_003378723.1
    CDS1..2730
    Translation

    Target ORF information:

    RefSeq Version XM_003378675.1
    Organism Trichinella spiralis
    Definition Trichinella spiralis putative protein tag-76 (Tsp_06667) mRNA, complete cds.

    Target ORF information:

    Epitope DYKDDDDK
    Bacterial selection AMPR
    Mammalian selection NeoR
    Vector pcDNA3.1+/C-(K)DYK
    XM_003378675.1

    ORF Insert Sequence:

    1
    61
    121
    181
    241
    301
    361
    421
    481
    541
    601
    661
    721
    781
    841
    901
    961
    1021
    1081
    1141
    1201
    1261
    1321
    1381
    1441
    1501
    1561
    1621
    1681
    1741
    1801
    1861
    1921
    1981
    2041
    2101
    2161
    2221
    2281
    2341
    2401
    2461
    2521
    2581
    2641
    2701
    ATGTCTCAAC AAAGCCAAGA TACGAATTTA GCTGCAGATG AACTGTCGCA GTTGGGTTTA 
    AAAGAATTAG TGAAGCGTCC TGGATACGGG ACTGTTGGCA AGCCGATAAA ATTAGCATGC
    AATTATTTTC CACTGATAAA ATTACAGAAA GGTGATATTG TGGTTAACAG ATATCACATC
    GACATACAAC ATCCACGTTT AAAGTTGAAT TGGTTCGATG ATGACAATCG TGACGTATTT
    TGGGCATATG TAGTGAAGCG TTCAGATATT TTTGGCGATC CATTTAAATT AGCGTACGAT
    GGGAAGAGTA CTTTGTTCAC AGTTGAGAAA TTACATTTGA AGCAAGTCGG TGAAACAGCA
    GATCCGGAAA AGTTTTCCTT CAAAACTGTT CGAGAAAATA AACCATCAGA GTTATCTATT
    TTGATGCAAT TCACTGGTCT GGTTCACTTG GACTTCAGAA ATGCAGAAGC CGGTTCGCTG
    GATGAACGTG AAAAGGGTCC AATTCAATTT TTGGATATAT TGTTTGCACA AGGGCGTTCA
    TCTCCATTAT TTGAATTGTC GAAATCATTC AAAGCAGTCA GGAATTCATT TTATTGCATT
    CCACAAGGTG CTGGTGTGGA CGTGAAATAT GGCATTGAAT TATGGAGAGG CTTGTTCATT
    TCTGCGCGCG TAATTGATGG TTTTCGACCA GCGATTAATA TTGATGTATC ACACAGTTGC
    TTTTACAAGC GTCAGTCACT GATAAATTTG ATTTGCGACA TATTGAATGG TGATGAACGT
    GAAGTAAGAT TTCATCCAAA TCAGCTTAGA TTGAATACCC AACTTCAACC AGAACATTTG
    AACTTGTTGA TACCAGAATT AAAAGGGGTC TGTATTCATA CAACACATCG AAATCAAGAT
    CGAATTTATC GTATTAAAAA TATACTCAGT ACGGCAGTAT CGATGAAATT CGAAAAAGAC
    GGAAAAGAAG TTTCAGTTGC GGAATATTTT CGTGATGTTT ATGGGCCATT AAAGTATCCA
    AACTTGCCGT TGGTTGAAGT CGGCAGTAAA TCAAAACCAA TTTATTTCCC AGTTGAACTT
    TGTCAAGTGG CAAACTGTCA AAGATACAAC AAGAAATTGA AAGCGTGTCA AACGACTTCT
    ATAATTCGAT TTGCTTCGAC AGACGCTCCT ACTCGAATTC TAAAGTGTAT GGACATGGTC
    AAGAAATCAA ATTTCAATAA TGATCCATTT TTGAAAAGTT TTGGCGTTCA AATTAAAGCG
    GAACCAATGA TTGTTAGTGG ACGAGTTTTG CCTCCGCCTA GGTTGGAATA TGGTAAAGGA
    AATGGAGGAC GTCAAATAAT TCTTACACCA AAAGATGGAG CATGGAATTC GAATGAATTT
    AAATTTTTTG AATCTGCTTC TTGCGAATCA TTTGGATTTG TATCGTTTCT ACCACCACAT
    AAAGCATCAA TGTTACAGGA ATTCTGTCTG CAAATTGTCA GAACATGTCG TAGTACAGGA
    ATTGAAATGC CGGACAGCCC AAAATTTTAC GAACAAGCGC GAAAAAATGA TACGGTAGAA
    ATGGTATTAA AACGTATTGC TGACAAATGT GACAGAGATG GAATAAAATG TGATTTGGTA
    TTTGTCGCGT TATTTTCATC TGAACAATAT GCTCAAGTGA AATCTTGTGG TGATATCACT
    TTTGGATTGG TCACTCAGTG TGTATTACCG AAAACAATAA GTGATGTAGC AATAAAGAAG
    AGTTATTCGA CGATGTTAAA TATTGCGATG AAAATAAATA TGAAAATTGG TGGCATCAAT
    ACAAAATTAC TGGAAGATGA AATTTTGGAT AATTATTTGT ATAAAAATAA TGCATTGGTA
    ATTGGTGTGG ATGTGGTTCA TCCATCTGTT GTAGAAACGC ATTTACCATC AATAGCTTCG
    GTGGGTATTA TTCATGGTAT TGTTGTTGGA AATGTGGATA CAAAAGTGAC GAAATTTCAT
    GCTTCGGTGA AACTACAACC AGCGAAACAA GAACTGATCA CAGGATTTAT CGAACAATTT
    TCTGAACGTT TACTGGAATA TCTTGATGTT AATGGTACGG CTCCGAAAAA TATTATTGTT
    TATCGAGATG GAGTATCCGA AGGTCAATTT ATGCAGGTTT TGGAAGAAGA ACTGCCTGCT
    CTTCGTAGGG CTTGCAAATC ATTTGCAACA AATTACCGGC CGTTGATTAC GTTTATTGTG
    GTTCAAAAGC GACATCATGC TCGATTTTTT TGTTGTGATG AAGCTGCAGC ACGAGGACGC
    GGGAAAAACA TCCCTGCTGG TACTGTTATC GATAGAGTAG TGACATCTCC TGATGAATAT
    GATTTCTTTT TGTGCAGTCA TCATGGAATT CAAGGAACTA GTAGACCGAC GCGATATCAT
    GTGCTGTTTG ATGAAAGCAA CATGGATGCG AATGTCATGC AATCGATTAC ATACTATTTA
    TGTCATCTGT ATGGTAGATG TGCTCGTTCT GTCAGTATAC CAGCACCAGT ATATTTTGCA
    GATTTAGTTT GCGCCCGTGC TCGTTATCAT GTTCTTGCAG CGTTAAATTC TGGTCTAGTG
    GAAAAGTATT CTGATGAAGA CAGTAATAGT AGTAGTGGTA GTAGTAGTAG TAGTAGTAGT
    TCCAGCAGTA AAGCCGAATC CGTGAAAACA GAATTGACTA ATATAATTGC ACTTCACAAA
    AGAGTTAAAA GAATCATGTA CTTTGCATGA

    The stop codons will be deleted if pcDNA3.1+/C-(K)DYK vector is selected.